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ABSTRACT 
Component-based software development allows to reduce 
development costs and shortening time-to-market, by using 
previously existing (or third-party) components to build 
software. But current component technologies usually solve 
cross-platform or low-level technical problems. There is a 
lack of available techniques for ensuring reliability during 
the integration process.  

There is plenty of room for component misuses, which 
produce hidden errors which are difficult to detect. Also, the 
evolution and maintenance of systems can lead to new 
problems when active restrictions are forgotten and violated. 

It is our opinion that components should incorporate 
additional information about assumptions and restrictions, 
and these statements should be automatically verifiable at 
construction time, in a completely static manner, prior to the 
testing stages. 

In this paper, a component model is described which allows 
the integration of knowledge into component definitions, so 
as to check the suitability of any component combination at 
the earliest development stages. Then, the relationship 
between this abstract model and its implementation is 
considered. Also, the role of this model in system evolution 
and regressive verification is discussed. 

PROBLEM DESCRIPTION 
For several years, component-based software development 
has been presented as a silver bullet for many of the 
traditional problems of the software development industry. 
Components –self-contained pieces that can be used to build 
a system by assembling them, and reused across multiple 
projects- have been extensively used, with great success, in 
microelectronics or other engineering fields; however, the 
software development industry had not embraced this 
approach. Too often, computer programs are developed 
almost from scratch and in an artisan manner, with obvious 
disadvantages; higher costs (specially taking into account 
that much of the work has been done already by other 
teams), poorer quality (due to planning pressure and higher 
complexity of the systems) and a much longer time-to-
market. Software development poses problems that are not 

present (or have been already solved) in other engineering 
fields; many of these problems have no solution by now, and 
they are expected to remain unsolved in the years to come 
[9, p.7]. 

The use of software components is expected to bring a 
shorter development cycle (by buying what can be bought 
instead of developing from the ground up), lower cost, and 
better quality (because components are supposed to be well-
tested artefacts). In the last few years, a strong trend towards 
component-based software development has emerged [20]. 

However, we find that this paradigm is far from being 
mature, and the main problems have to do with proper 
knowledge management. Although components are 
expected to be robust, the integration process between 
different components can cause completely new defects [11, 
12]. One reason is that component documentation is usually 
a bunch of human-readable usage instructions, written in 
natural languages and hence ambiguous; the only 
automatically-checkable specifications refer to the structure 
of component interfaces. This leaves plenty of room for 
component misuses; when joining components, a systems 
integrator can unintentionally violate the assumptions made 
by the component creator, be it calling order, concurrency 
issues, or use protocols. These defects can easily remain 
hidden until run time, with catastrophic consequences  [15].  

Moreover, the evolution and maintenance of systems can get 
even worse. As components and systems evolve, any change 
can also introduce new problems, and they can be very 
difficult to catch [16] . Even if a good regression test is 
done, there can be defects which have nothing to do with the 
global behaviour of the system, but with local requirements 
of individual components that are violated only in a few 
situations; in these cases, effective testing can be very 
difficult to achieve. So techniques are needed in order to 
guarantee that evolution does not induce a degradation of 
the system or affect its reliability [16, 19]. We think that 
design issues should be represented in a manner that can be 
processed by a machine [3] so that they can be verified 
whenever a change is made to the system. Pre-/post-
conditions and invariants have been used for this purpose 
[17], but software must be executed in order for these 



 

mechanisms to act, and in some sense, they suffer from the 
same difficulties as testing. 

COMPONENTS AND KNOWLEDGE AS A 
MEANS OF VERIFYING SOFTWARE 
Our research work is oriented towards this kind of problems. 
We think that the traditional testing stage is necessary, but 
many problems could be caught in a static analysis, at earlier 
development stages (at construction time). Many efforts 
have been made in the area of general-purpose static 
analysis of programs [2, 5, 6, 7, 14], but we think that 
another important key is the use of specific knowledge about 
the components and the codification of this knowledge in an 
automatically-checkable manner. 

A component model can be used not only to physically 
organize the software, or to achieve a shorter or cheaper 
development cycle, but also to statically verify the software 
and to support the storing of knowledge about components. 
The term statically, in this context, implies that no execution 
of the program is needed. Our model proposes that a 
component’s interface not only has a set of operation names 
and parameters, but also a set of restrictive expressions. 
These expressions state which conditions should be fulfilled 
when using the component, and also what the component 
can guarantee about its output. Assuming that components 
are black boxes that can only be used by interacting with 
their exposed interfaces, the only way of making a bad use 
of a component would be a bad use of these interfaces. So 
restrictive expressions about interfaces should detect –and 
hence help to prevent- any kind of misuse of the 
components. 

As an elementary example, units of measurement are a 
traditional source of mismatches. Very frequently, type 
information does not allow distinguishing between different 
units; but type information is very often the only one that 
gets verified for proper matching. Should we decide to 
(automatically) verify measurement units mismatches in a 
system, a first solution would be the definition of a new, 
specific data type. But this is not always possible. 

If components carry also restrictive expressions as proposed 
here, this problem can be addressed. The component 
designer/builder can write down all the relevant information, 
including component requirements. When two components 
are connected, each of the connection points can be tested 
for validity; the restrictive expressions associated with both 
components must match without leading to inconsistencies. 
If a component requires certain input value to be expressed 
in km, for instance, the element connected to that input 
value must offer some expression which states that the 

provided value is always expressed in km. Otherwise, the 
verification process will pinpoint the failed statement. 

FIRST-ORDER LOGIC PREDICATES AND 
KNOWLEDGE BASE GENERATION 
Our undergoing research project is focused in these ideas, 
and we are developing a component model for checking 
them. This component model (code-named Itacio [4, 13]) 
uses first-order logic predicates  [18] in the form of Horn 
clauses as the means for expressing restrictions. 

THE COMPONENT MODEL 
Components: A component C is an entity which has a 
frontier F and a set of restrictive expressions E.  

Given a component C, we will also use the notation F(C) 
and E(C) to designate the frontier and the set of restrictive 
expressions of that component. The set of all possible 
components is denoted by C1. 

The frontier of a component is a finite set whose elements 
are called connection points. A connection point can be a 
source (s) or a sink (k), so F is in fact divided into two 
disjoint subsets: 

F = S ∪ K 
S ∩ K = ∅ 

where 
S = {s1, s2, …, sn} 2 
K = {k1, k2, …, km} 

The set of all possible connection point names is denoted by 
A (from “atoms”). 

We will make use of the notation S(C) and K(C) to 
designate respectively the set of sources and the set of sinks 
of a given component C. Also, notice that when several 
components are involved, indices are used to refer to 
components or their parts, and the dot notation may be used 
to qualify the connection points. Qualified names include 
the component name so that ambiguities are avoided; for 
instance, si ∈ S(Cn) becomes Cn.si 

Restrictive expressions are also divided into two disjoint 
sets: the set of requirements, R, and the set of guarantees, 
G. Both R and G are populated by first-order logic 

                                                           

1 Domains will be expressed with bold fonts. 
2 Italic fonts will be used for connection points, so that they 
can be distinguished from indices. 



 

predicates over the connection points of that component. 
The set of all possible predicates is denoted by P. 

E = R ∪ G 
R ∩ G = ∅ 

R = {p1(k1, k2, ..., km), …, pm(k1, k2, …, km)} 
G = {q1(k1, …, km, s1, …, sn), …, qr(k1, …, km, s1, …, sn)} 

It can be seen that requirements refer only to sinks, whereas 
guarantees refer to both sinks and sources. For a given  
component C, G can have any cardinality, but R has always 
the same cardinality as K, and there is a one-to-one 
correspondence between requirements and sinks: 

card(R) = card(K) 
∀ ki ∈ K ∃! pi ∈ R 

System: A system Ω is a finite graph (whose nodes ν are 
components and whose edges ε are source/sink pairs), 
together with a set of auxiliary predicates, L (from 
“library”). In this case we will use the dot notation in order 
to refer to the connection points (be it sources or sinks) of 
each component, as follows: 

Ω = {ν, ε, L} 
ν = {C1, …, Cn} 

ε = {(Ci.sj, Ck.kl)} 
L ⊂ P

∀ p ∈ L, p does not refer to any connection point 

We will also use the notation ν(Ω), ε(Ω) and L(Ω) to refer 
to the nodes (components), the edges (connections between 
a source and a sink) and the auxiliary predicates of a given 
system Ω, respectively. The set of all possible systems is 
denoted by S. Also, whereas P and A are respectively the set 
of all possible predicates and atoms (and hence infinite sets), 
P and A are the set of all predicates and atoms used in a 
given system (hence finite sets). They are also denoted by 
P(Ω) and A(Ω). 

Topological correctness: A system Ω is said to be 
topologically correct (and this fact is denoted with the 
predicate Tc(Ω)) if  there is no isolated connection point and 
there is no connection point with multiple connections: 

Tc(Ω) ⇔ 
∀ Ci ∈ν(Ω), ∀ sj ∈ S(Ci) ∃! (Ci.sj, Ck.kl) ∈ ε(Ω) ∧ 

 ∀ Ck ∈ν(Ω), ∀ kl ∈ S(Ck) ∃! (Ci.sj, Ck.kl) ∈ ε(Ω) 

From the previous definition, it can be proven that for a 
system to be topologically correct the total number of 
sources and sinks must be equal. 

Tc(Ω) ⇒ Σ card(S(Ci)) = Σ card(K(Ci)) 

THE VERIFICATION MODEL 
Raw knowledge base: The raw knowledge base for Ω 
(denoted as Kr(Ω)) is the set of all predicates of all 
components in the system (provided that both sources and 
sinks are referred to with their qualified name to avoid 
ambiguities) and all auxiliary predicates. The subsets of 
requirements and guarantees keep separated and hence 
identifiable: 

Kr : S à Pn Rr : Sà Pn Gr : Sà Pn 
Rr= λΩ . {p | p ∈ R(Ci), Ci ∈ ν(Ω)} 
Gr= λΩ . {q | q ∈ G(Ci), Ci ∈ ν(Ω)} 

Kr= λΩ . Rr(Ω) ∪ Gr(Ω) ∪ L(Ω) 

At this point we should discuss the usefulness of the raw 
knowledge base. It has been said above that the properties of 
a system are not necessarily the mere addition of the 
properties of its components. The behaviour of a component 
can affect the system indirectly in remote places. On the 
other hand, fulfilling a component’s requirements directly at 
its immediate neighbour component can be difficult or 
impossible; maybe these requirements are fulfilled indirectly 
by the previous combination of several components. 

The raw knowledge base is easily generated for a given 
system, and it collects all the knowledge about each 
component. But it seems clear that the “local” knowledge of 
a component serves, by itself, a very limited purpose. In that 
sense, the aforementioned raw knowledge base Kr(Ω) is not 
very useful. It is nothing but a concatenation of restrictive 
expressions of components, with no information about 
connections; it can be seen in its definition that Kr depends 
only on  ν(Ω), and no reference is made to ε(Ω). It implies 
that any other system with the same components connected 
in a completely different way would lend the same raw 
knowledge base Kr(Ω). 

The following steps and definitions are headed towards the 
incorporation of all the information in ε(Ω), so that the 
resulting knowledge base contains all the relevant 
information of the system.  

Atom renaming: The atom substitution function subs is 
defined as follows: 

subs : P × A × Aà P 
subs(p(a1, …, an), ai, b) = σ(p(a1, …, an)) 



 

where σ = {ai / b} is a substitution that, when applied to any 
predicate,  produces a new predicate in which all 
occurrences of ai have been simultaneously replaced by b. 

Also, there is a subsn function which can be applied to a set 
of predicates: 

subsn : Pn × A × Aà Pn 
subsn = λPλaλb . {q | p ∈ P, q = subs(p, a, b)} 

The atom alias generation function alias is defined as 
follows: 

alias : Pn à A
alias = λP . b ∈ A / b is not used in any predicate of P 

Knowledge base: Let ε(Ω) = {e1, e2, …, en} be the set of 
edges of a given system Ω and let us suppose that Tc(Ω) 
holds. As said above, each element ei will have the form (si, 
ki) where s is a source of some component and k is a sink 
(dot notation has not been used in this case for the sake of 
readability). We define a series of transformations: for each 
edge, all the occurrences of both the source and the sink of 
that edge are substituted by the same alias, which is a 
generated atom name that did not exist previously in the set 
of expressions. 

R0 = Rr(Ω) G0 = Gr(Ω) K0 = R 0 ∪ G 0 ∪ L 
fi = alias(K i-1) 
R i = subsn(subsn(R i-1, si, fi), ki, fi) 
Gi = subsn(subsn(G i-1, si, fi), ki, fi) 
K i = R i ∪ G i ∪ L 

The result of the last transformation, Kn, is called the 
knowledge base for the given system Ω, and it is denoted by 
K(Ω). Analogously, Rn is denoted by R(Ω) and Gn is 
denoted by G(Ω). In other words: R(Ω) is the set of all 
requirements of the individual components, transformed so 
that if a source and a sink are connected,  their names have 
been substituted (in all requirements) by the same atom 
name, a new name which is unique within the whole system. 
The same applies to G(Ω). Finally, the knowledge base 
K(Ω) contains the predicates of both R(Ω) and G(Ω). 

Correctness: Let S be a system, S ∈ S. S is said to be 
correct (and it is denoted by correct(Ω)) ⇔  

Tc(S) ∧  
∀ p ∈ R(Ω) p is true based on the predicates in K(Ω) 

Also, individual connection points can be tested for 
correctness; let us remember that there is a one-to-one 
relationship between elements of  R(C) and K(C), so there is 
also a correspondence between each p ∈ R(Ω) and some ki 

∈ K(Cj). If p is false, then its associated sink has a non-
acceptable connection. 

The reason for this correction criterion is at follows. As said 
above, our verification strategy is based on verifying that 
each component has its requirements fulfilled. Since R(Ω) 
contains a predicate for each component sink in the system, 
and that predicate is the set of requirements for that 
connection point, if this predicate holds, the requirements 
are in fact fulfilled. 

At this point, the knowledge base incorporates all the 
knowledge we have about the system, including the 
information about the connection lattice. If an inference 
process is launched over a given predicate p ∈ R(Ω), this 
inference process will be able to search through all the 
knowledge base, collecting all relevant information. 
Transitive relationships between requirements and 
guarantees are also taken into account; thanks to the 
substitution process described earlier, all the knowledge in 
ε(Ω) is implicitly included in K(Ω). 

IMPLEMENTATION ISSUES 
As part of our research work, a prototype of the Itacio model 
has been developed to test its feasibility. In this chapter, 
several comments and learned lessons are collected 
regarding implementation. 

The component notion: The above definition of component 
is general enough to catch any kind of requirement. The 
interface of the component is associated to the idea of 
frontier F, and this is nothing but a collection of sources and 
sinks. No type system is necessarily involved, no forceful 
identification between interfaces and object operations, as it 
usually happens in other component systems such as COM 
or CORBA [20]. However, it is still perfectly possible to 
adhere to such approaches. 

This allows a huge degree of flexibility; the concept of 
component is intentionally vague, so any piece of software 
can be described as a component at any abstraction level as 
long as its frontier can be delimited. 

Apart from this loose (and hence powerful) characterization 
of what a component is, the real usefulness of this model is 
that all components carry knowledge about their 
requirements and guarantees. This is not too difficult to do; 
in Itacio, a simple text file suffices for describing the 
frontier and restrictive expressions of a component. 

Restrictive expressions: Because restrictive expressions are 
identified with first-order logic predicates (in the form of 



 

Horn clauses), they can collect very diverse information. 
Also, correctness can be easily tested with an inference 
engine. In our prototype, a Constraint Logic Programming 
system is used [8, 10, 21]. This way, much of the initial 
goals of this project are fulfilled: the information about a 
component’s intended use can be easily written and 
automatically verified. 

Auxiliary predicates: Auxiliary predicates collect all the 
domain-specific knowledge of the environment the 
components are applied in. For instance, if components are 
identified with traditional objects or subroutines, and 
restrictive expressions are used to implement a usual type-
checking system over them, L(Ω) would contain all type-
matching and casting rules of that type system. On the other 
hand, if components represent contracts between objects, 
L(Ω) would probably contain the set of rules for well-
formedness of contracts [16]. 

From local to global: As said above, the raw knowledge 
base lacks significant information and consists only of 
“local” statements, making impossible to make “transitive” 
reasoning. The knowledge base K(Ω), however, implicitly 
carries all the information about connections. The iterative 
process of substitution by which K(Ω) is built depends 
directly on each and every edge of ε(Ω); this renaming 
process implicitly relates sources and sinks by the 
coincidence of atom names. 

This allows the verification process to be complete. All of 
the information contained in K(Ω) (that is, all of the 
information of the system) is taken into account when 
verifying the fulfilment of some requirement. The inference 
process over a set of Horn clauses is well-known and this 
schema can take advantage of all this knowledge in a 
general, open, flexible manner, without the need of 

developing new complex and costly special-purpose 
algorithms such as the one described in [2, 6] unless it is 
really necessary. 

Regarding implementation, Kr(Ω) is easily generated by 
mere concatenation of strings or files, and the atom 
substitution process subsn is not difficult to achieve. In 
Itacio, atoms are marked with special characters, so that the 
substitution process is simply a substring search-and-replace 
algorithm. 

Prototype: We have been working in the development of 
prototypes based on these ideas. After a first prototype 
based in a proprietary diagramming system [4] we have 
implemented a second one, based on a Java/XML core, a 
CLP system (ECLiPSe) for inferences, and a Web/VML 
interface (Fig.  1). All component and system specifications 
are collected in simple text files. A system can be verified 
according to the process described above; as a result, 
verification information is transformed into a graphical 
representation, rendered by means of VML (Fig. 2). The 
user can see the graph of components representing the 
system, and offending connections are pinpointed with 
special icons. Clicking on any connection point, the user can 
se an explanation about the correctness of that union. 

DEVELOPMENT PROCESS ISSUES 
How would this model fit in the software development 
process? The model is general enough to be applied in very 
different ways and at very different abstraction levels, from 
microcomponents [4] to architectural compositions [1]. The 
first step for the model to be used is a process of 
instantiation, for which a decision is made about what 
software artefacts will be identified with C. Next, the 
concepts of component sources and sinks must also be 
identified for the elements in C. 

 

 

 

 

 

Fig.  1. Itacio prototype architecture 

The construction of component-based software can be 
driven by any chosen methodology, and this is not the focus 
of this article. Essentially, components will be developed 

from scratch or reused from some other source, and then 
assembled. In both cases, the knowledge about each 
component (restrictions and guarantees) must be collected in 
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the component definition, which will be stored in some sort 
of database (and it has been said that simple text files will 
suffice as the simplest case). Also, any auxiliary predicates 
needed will also be stored in the corresponding library, 
L(Ω). Of course, the process of collecting knowledge while 
keeping consistency and/or efficiency is not a trivial one, 
but it can be supported by work already done in the area of 
knowledge engineering. 

During the assembly phase, verification can start very early. 
The model described here could even be slightly modified 
so that a knowledge base is generated upon a non-
topologically-correct system; even if there are unconnected 
components, restrictions can be verified in a “check-as-you-
add” basis. The only problem is that the knowledge base 
would be incomplete, so there would be the possibility that 
many restrictions fail, but this could be useful for the 
developer in practice, if he can isolate the interesting 
diagnostics and discard the others. When a restriction is not 
fulfilled, the system can pinpoint the offending connection 
and even explain the reason for the incorrectness, so that 
appropriate action (introduce additional components, modify 
component requirements) is taken.  

 

Fig.  2. Results of a validation in Itacio (Internet Explorer 
screen fragment). The big square on the lower left corner is 
an invalid connection. Clicking on the invalid connection 
point it gives explanations about the failed requirements. 

This model has also a role in the development of a 
component in itself; the set of restrictive expressions offers 
an invaluable help regarding testing.Apart from the usual 
testing procedures based on general-purpose techniques, all 
of the restrictive expressions of the component should be 
taken into account. The problem of determining if a 
component behaves as it claims to behave (that is, if the 
restrictive expressions are, in fact, true) has no known 
universal solution, but it can ultimately be addressed by 
means of traditional testing and quality assurance 
techniques, by applying the Itacio model at inner abstraction 
levels, or by using any other verification-and-validation 
technique. 

Evolution: The problem of system evolution can greatly 
benefit from this approach. Whenever a change is made to 
the system by substituting a component (be it with a newer 
version or with different components) the restrictive 
expressions for that component will be updated accordingly; 
in this case, a completely automatic process can generate 
again the whole knowledge base K(Ω) and make all the 
corresponding tests over R(Ω), detecting any violation of a 
requirement, even if that requirement is indirectly affected 
by the change as the result of a chain of influences.  

If the change is being made inside a component C without 
substituting it, the knowledge stored in E(C) will serve again 
as a guide for proper testing; E(C) contains what a 
component promises to be. If these statements do not change 
(that is, the requirements/guarantees are not affected by the 
modification of the component) the test procedures 
developed when building the component should be reused to 
make a regression test (as automatic as it can be); if the 
behaviour of the component changes, E(C) will be updated, 
and the test cases will be updated accordingly, so that the 
component can be properly tested. Also, the impact of this 
behaviour change in the overall behaviour of the system can 
be assessed by generating K(Ω) and verifying again if 
correct(Ω) holds. 

CONCLUSIONS AND FUTURE WORK 
The use of software components in industry is usually ad-
hoc and many tools are focused on low-level issues. We 
think that many of the bugs that are produced when 
integrating components could be caught with a knowledge-
based approach; much of the knowledge about restrictions 
or requirements is only collected in documentation and 
serves no purpose when it comes to automatic verification of 
systems, so its usefulness is simply lost. 

The model presented here offers a method for integrating 
knowledge in the component-based software development 



 

process, and its role in several development stages is 
discussed. This approach allows to enhance unit testing of 
components and also to make more complex deductions 
about the global behaviour of the system. This kind of 
analysis is not usually done, although relying exclusively on 
testing stages puts too much pressure on this activity. 

As said above, we have built a second, web-based prototype 
of Itacio. We are working on specific applications of this 
prototype at different abstraction levels, such as 
microcomponents, contracts between objects, etc. We expect 
this system to grow in order to validate our ideas in a variety 
of fields. In the future, other research lines could be 
addressed, such as reverse engineering techniques for 
detecting components in legacy code (so that this 
verification model could be applied to non-component-
based, legacy software), improving the use of constraint 
logic programming so that the system not only detects 
problems but also makes a reasoning to propose a solution 
(semi-automatic design systems), etc. 
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