

A Model for Integrating Knowledge into Component-Based Software Development

 Agustín Cernuda del Río Jose Emilio Labra Gayo Juan Manuel Cueva Lovelle
 Department of Computer Science - University of Oviedo
 C/Calvo Sotelo S/N, 33007 Oviedo, Spain
 +34 985 10 {50 94, 33 94, 33 96}
 {guti, labra, cueva}@lsi.uniovi.es

ABSTRACT
Component-based software development allows to reduce
development costs and shortening time-to-market, by using
previously existing (or third-party) components to build
software. But current component technologies usually solve
cross-platform or low-level technical problems. There is a
lack of available techniques for ensuring reliability during
the integration process.

There is plenty of room for component misuses, which
produce hidden errors which are difficult to detect. Also, the
evolution and maintenance of systems can lead to new
problems when active restrictions are forgotten and violated.

It is our opinion that components should incorporate
additional information about assumptions and restrictions,
and these statements should be automatically verifiable at
construction time, in a completely static manner, prior to the
testing stages.

In this paper, a component model is described which allows
the integration of knowledge into component definitions, so
as to check the suitability of any component combination at
the earliest development stages. Then, the relationship
between this abstract model and its implementation is
considered. Also, the role of this model in system evolution
and regressive verification is discussed.

PROBLEM DESCRIPTION
For several years, component-based software development
has been presented as a silver bullet for many of the
traditional problems of the software development industry.
Components –self-contained pieces that can be used to build
a system by assembling them, and reused across multiple
projects- have been extensively used, with great success, in
microelectronics or other engineering fields; however, the
software development industry had not embraced this
approach. Too often, computer programs are developed
almost from scratch and in an artisan manner, with obvious
disadvantages; higher costs (specially taking into account
that much of the work has been done already by other
teams), poorer quality (due to planning pressure and higher
complexity of the systems) and a much longer time-to-
market. Software development poses problems that are not

present (or have been already solved) in other engineering
fields; many of these problems have no solution by now, and
they are expected to remain unsolved in the years to come
[9, p.7].

The use of software components is expected to bring a
shorter development cycle (by buying what can be bought
instead of developing from the ground up), lower cost, and
better quality (because components are supposed to be well-
tested artefacts). In the last few years, a strong trend towards
component-based software development has emerged [20].

However, we find that this paradigm is far from being
mature, and the main problems have to do with proper
knowledge management. Although components are
expected to be robust, the integration process between
different components can cause completely new defects [11,
12]. One reason is that component documentation is usually
a bunch of human-readable usage instructions, written in
natural languages and hence ambiguous; the only
automatically-checkable specifications refer to the structure
of component interfaces. This leaves plenty of room for
component misuses; when joining components, a systems
integrator can unintentionally violate the assumptions made
by the component creator, be it calling order, concurrency
issues, or use protocols. These defects can easily remain
hidden until run time, with catastrophic consequences [15].

Moreover, the evolution and maintenance of systems can get
even worse. As components and systems evolve, any change
can also introduce new problems, and they can be very
difficult to catch [16] . Even if a good regression test is
done, there can be defects which have nothing to do with the
global behaviour of the system, but with local requirements
of individual components that are violated only in a few
situations; in these cases, effective testing can be very
difficult to achieve. So techniques are needed in order to
guarantee that evolution does not induce a degradation of
the system or affect its reliability [16, 19]. We think that
design issues should be represented in a manner that can be
processed by a machine [3] so that they can be verified
whenever a change is made to the system. Pre-/post-
conditions and invariants have been used for this purpose
[17], but software must be executed in order for these

mechanisms to act, and in some sense, they suffer from the
same difficulties as testing.

COMPONENTS AND KNOWLEDGE AS A
MEANS OF VERIFYING SOFTWARE
Our research work is oriented towards this kind of problems.
We think that the traditional testing stage is necessary, but
many problems could be caught in a static analysis, at earlier
development stages (at construction time). Many efforts
have been made in the area of general-purpose static
analysis of programs [2, 5, 6, 7, 14], but we think that
another important key is the use of specific knowledge about
the components and the codification of this knowledge in an
automatically-checkable manner.

A component model can be used not only to physically
organize the software, or to achieve a shorter or cheaper
development cycle, but also to statically verify the software
and to support the storing of knowledge about components.
The term statically, in this context, implies that no execution
of the program is needed. Our model proposes that a
component’s interface not only has a set of operation names
and parameters, but also a set of restrictive expressions.
These expressions state which conditions should be fulfilled
when using the component, and also what the component
can guarantee about its output. Assuming that components
are black boxes that can only be used by interacting with
their exposed interfaces, the only way of making a bad use
of a component would be a bad use of these interfaces. So
restrictive expressions about interfaces should detect –and
hence help to prevent- any kind of misuse of the
components.

As an elementary example, units of measurement are a
traditional source of mismatches. Very frequently, type
information does not allow distinguishing between different
units; but type information is very often the only one that
gets verified for proper matching. Should we decide to
(automatically) verify measurement units mismatches in a
system, a first solution would be the definition of a new,
specific data type. But this is not always possible.

If components carry also restrictive expressions as proposed
here, this problem can be addressed. The component
designer/builder can write down all the relevant information,
including component requirements. When two components
are connected, each of the connection points can be tested
for validity; the restrictive expressions associated with both
components must match without leading to inconsistencies.
If a component requires certain input value to be expressed
in km, for instance, the element connected to that input
value must offer some expression which states that the

provided value is always expressed in km. Otherwise, the
verification process will pinpoint the failed statement.

FIRST-ORDER LOGIC PREDICATES AND
KNOWLEDGE BASE GENERATION
Our undergoing research project is focused in these ideas,
and we are developing a component model for checking
them. This component model (code-named Itacio [4, 13])
uses first-order logic predicates [18] in the form of Horn
clauses as the means for expressing restrictions.

THE COMPONENT MODEL
Components: A component C is an entity which has a
frontier F and a set of restrictive expressions E.

Given a component C, we will also use the notation F(C)
and E(C) to designate the frontier and the set of restrictive
expressions of that component. The set of all possible
components is denoted by C1.

The frontier of a component is a finite set whose elements
are called connection points. A connection point can be a
source (s) or a sink (k), so F is in fact divided into two
disjoint subsets:

F = S ∪ K
S ∩ K = ∅

where
S = {s1, s2, …, sn} 2
K = {k1, k2, …, km}

The set of all possible connection point names is denoted by
A (from “atoms”).

We will make use of the notation S(C) and K(C) to
designate respectively the set of sources and the set of sinks
of a given component C. Also, notice that when several
components are involved, indices are used to refer to
components or their parts, and the dot notation may be used
to qualify the connection points. Qualified names include
the component name so that ambiguities are avoided; for
instance, si ∈ S(Cn) becomes Cn.si

Restrictive expressions are also divided into two disjoint
sets: the set of requirements, R, and the set of guarantees,
G. Both R and G are populated by first-order logic

1 Domains will be expressed with bold fonts.
2 Italic fonts will be used for connection points, so that they
can be distinguished from indices.

predicates over the connection points of that component.
The set of all possible predicates is denoted by P.

E = R ∪ G
R ∩ G = ∅

R = {p1(k1, k2, ..., km), …, pm(k1, k2, …, km)}
G = {q1(k1, …, km, s1, …, sn), …, qr(k1, …, km, s1, …, sn)}

It can be seen that requirements refer only to sinks, whereas
guarantees refer to both sinks and sources. For a given
component C, G can have any cardinality, but R has always
the same cardinality as K, and there is a one-to-one
correspondence between requirements and sinks:

card(R) = card(K)
∀ ki ∈ K ∃! pi ∈ R

System: A system Ω is a finite graph (whose nodes ν are
components and whose edges ε are source/sink pairs),
together with a set of auxiliary predicates, L (from
“library”). In this case we will use the dot notation in order
to refer to the connection points (be it sources or sinks) of
each component, as follows:

Ω = {ν, ε, L}
ν = {C1, …, Cn}

ε = {(Ci.sj, Ck.kl)}
L ⊂ P

∀ p ∈ L, p does not refer to any connection point

We will also use the notation ν(Ω), ε(Ω) and L(Ω) to refer
to the nodes (components), the edges (connections between
a source and a sink) and the auxiliary predicates of a given
system Ω, respectively. The set of all possible systems is
denoted by S. Also, whereas P and A are respectively the set
of all possible predicates and atoms (and hence infinite sets),
P and A are the set of all predicates and atoms used in a
given system (hence finite sets). They are also denoted by
P(Ω) and A(Ω).

Topological correctness: A system Ω is said to be
topologically correct (and this fact is denoted with the
predicate Tc(Ω)) if there is no isolated connection point and
there is no connection point with multiple connections:

Tc(Ω) ⇔
∀ Ci ∈ν(Ω), ∀ sj ∈ S(Ci) ∃! (Ci.sj, Ck.kl) ∈ ε(Ω) ∧

 ∀ Ck ∈ν(Ω), ∀ kl ∈ S(Ck) ∃! (Ci.sj, Ck.kl) ∈ ε(Ω)

From the previous definition, it can be proven that for a
system to be topologically correct the total number of
sources and sinks must be equal.

Tc(Ω) ⇒ Σ card(S(Ci)) = Σ card(K(Ci))

THE VERIFICATION MODEL
Raw knowledge base: The raw knowledge base for Ω
(denoted as Kr(Ω)) is the set of all predicates of all
components in the system (provided that both sources and
sinks are referred to with their qualified name to avoid
ambiguities) and all auxiliary predicates. The subsets of
requirements and guarantees keep separated and hence
identifiable:

Kr : S à Pn Rr : Sà Pn Gr : Sà Pn
Rr= λΩ . {p | p ∈ R(Ci), Ci ∈ ν(Ω)}
Gr= λΩ . {q | q ∈ G(Ci), Ci ∈ ν(Ω)}

Kr= λΩ . Rr(Ω) ∪ Gr(Ω) ∪ L(Ω)

At this point we should discuss the usefulness of the raw
knowledge base. It has been said above that the properties of
a system are not necessarily the mere addition of the
properties of its components. The behaviour of a component
can affect the system indirectly in remote places. On the
other hand, fulfilling a component’s requirements directly at
its immediate neighbour component can be difficult or
impossible; maybe these requirements are fulfilled indirectly
by the previous combination of several components.

The raw knowledge base is easily generated for a given
system, and it collects all the knowledge about each
component. But it seems clear that the “local” knowledge of
a component serves, by itself, a very limited purpose. In that
sense, the aforementioned raw knowledge base Kr(Ω) is not
very useful. It is nothing but a concatenation of restrictive
expressions of components, with no information about
connections; it can be seen in its definition that Kr depends
only on ν(Ω), and no reference is made to ε(Ω). It implies
that any other system with the same components connected
in a completely different way would lend the same raw
knowledge base Kr(Ω).

The following steps and definitions are headed towards the
incorporation of all the information in ε(Ω), so that the
resulting knowledge base contains all the relevant
information of the system.

Atom renaming: The atom substitution function subs is
defined as follows:

subs : P × A × Aà P
subs(p(a1, …, an), ai, b) = σ(p(a1, …, an))

where σ = {ai / b} is a substitution that, when applied to any
predicate, produces a new predicate in which all
occurrences of ai have been simultaneously replaced by b.

Also, there is a subsn function which can be applied to a set
of predicates:

subsn : Pn × A × Aà Pn
subsn = λPλaλb . {q | p ∈ P, q = subs(p, a, b)}

The atom alias generation function alias is defined as
follows:

alias : Pn à A
alias = λP . b ∈ A / b is not used in any predicate of P

Knowledge base: Let ε(Ω) = {e1, e2, …, en} be the set of
edges of a given system Ω and let us suppose that Tc(Ω)
holds. As said above, each element ei will have the form (si,
ki) where s is a source of some component and k is a sink
(dot notation has not been used in this case for the sake of
readability). We define a series of transformations: for each
edge, all the occurrences of both the source and the sink of
that edge are substituted by the same alias, which is a
generated atom name that did not exist previously in the set
of expressions.

R0 = Rr(Ω) G0 = Gr(Ω) K0 = R 0 ∪ G 0 ∪ L
fi = alias(K i-1)
R i = subsn(subsn(R i-1, si, fi), ki, fi)
Gi = subsn(subsn(G i-1, si, fi), ki, fi)
K i = R i ∪ G i ∪ L

The result of the last transformation, Kn, is called the
knowledge base for the given system Ω, and it is denoted by
K(Ω). Analogously, Rn is denoted by R(Ω) and Gn is
denoted by G(Ω). In other words: R(Ω) is the set of all
requirements of the individual components, transformed so
that if a source and a sink are connected, their names have
been substituted (in all requirements) by the same atom
name, a new name which is unique within the whole system.
The same applies to G(Ω). Finally, the knowledge base
K(Ω) contains the predicates of both R(Ω) and G(Ω).

Correctness: Let S be a system, S ∈ S. S is said to be
correct (and it is denoted by correct(Ω)) ⇔

Tc(S) ∧
∀ p ∈ R(Ω) p is true based on the predicates in K(Ω)

Also, individual connection points can be tested for
correctness; let us remember that there is a one-to-one
relationship between elements of R(C) and K(C), so there is
also a correspondence between each p ∈ R(Ω) and some ki

∈ K(Cj). If p is false, then its associated sink has a non-
acceptable connection.

The reason for this correction criterion is at follows. As said
above, our verification strategy is based on verifying that
each component has its requirements fulfilled. Since R(Ω)
contains a predicate for each component sink in the system,
and that predicate is the set of requirements for that
connection point, if this predicate holds, the requirements
are in fact fulfilled.

At this point, the knowledge base incorporates all the
knowledge we have about the system, including the
information about the connection lattice. If an inference
process is launched over a given predicate p ∈ R(Ω), this
inference process will be able to search through all the
knowledge base, collecting all relevant information.
Transitive relationships between requirements and
guarantees are also taken into account; thanks to the
substitution process described earlier, all the knowledge in
ε(Ω) is implicitly included in K(Ω).

IMPLEMENTATION ISSUES
As part of our research work, a prototype of the Itacio model
has been developed to test its feasibility. In this chapter,
several comments and learned lessons are collected
regarding implementation.

The component notion: The above definition of component
is general enough to catch any kind of requirement. The
interface of the component is associated to the idea of
frontier F, and this is nothing but a collection of sources and
sinks. No type system is necessarily involved, no forceful
identification between interfaces and object operations, as it
usually happens in other component systems such as COM
or CORBA [20]. However, it is still perfectly possible to
adhere to such approaches.

This allows a huge degree of flexibility; the concept of
component is intentionally vague, so any piece of software
can be described as a component at any abstraction level as
long as its frontier can be delimited.

Apart from this loose (and hence powerful) characterization
of what a component is, the real usefulness of this model is
that all components carry knowledge about their
requirements and guarantees. This is not too difficult to do;
in Itacio, a simple text file suffices for describing the
frontier and restrictive expressions of a component.

Restrictive expressions: Because restrictive expressions are
identified with first-order logic predicates (in the form of

Horn clauses), they can collect very diverse information.
Also, correctness can be easily tested with an inference
engine. In our prototype, a Constraint Logic Programming
system is used [8, 10, 21]. This way, much of the initial
goals of this project are fulfilled: the information about a
component’s intended use can be easily written and
automatically verified.

Auxiliary predicates: Auxiliary predicates collect all the
domain-specific knowledge of the environment the
components are applied in. For instance, if components are
identified with traditional objects or subroutines, and
restrictive expressions are used to implement a usual type-
checking system over them, L(Ω) would contain all type-
matching and casting rules of that type system. On the other
hand, if components represent contracts between objects,
L(Ω) would probably contain the set of rules for well-
formedness of contracts [16].

From local to global: As said above, the raw knowledge
base lacks significant information and consists only of
“local” statements, making impossible to make “transitive”
reasoning. The knowledge base K(Ω), however, implicitly
carries all the information about connections. The iterative
process of substitution by which K(Ω) is built depends
directly on each and every edge of ε(Ω); this renaming
process implicitly relates sources and sinks by the
coincidence of atom names.

This allows the verification process to be complete. All of
the information contained in K(Ω) (that is, all of the
information of the system) is taken into account when
verifying the fulfilment of some requirement. The inference
process over a set of Horn clauses is well-known and this
schema can take advantage of all this knowledge in a
general, open, flexible manner, without the need of

developing new complex and costly special-purpose
algorithms such as the one described in [2, 6] unless it is
really necessary.

Regarding implementation, Kr(Ω) is easily generated by
mere concatenation of strings or files, and the atom
substitution process subsn is not difficult to achieve. In
Itacio, atoms are marked with special characters, so that the
substitution process is simply a substring search-and-replace
algorithm.

Prototype: We have been working in the development of
prototypes based on these ideas. After a first prototype
based in a proprietary diagramming system [4] we have
implemented a second one, based on a Java/XML core, a
CLP system (ECLiPSe) for inferences, and a Web/VML
interface (Fig. 1). All component and system specifications
are collected in simple text files. A system can be verified
according to the process described above; as a result,
verification information is transformed into a graphical
representation, rendered by means of VML (Fig. 2). The
user can see the graph of components representing the
system, and offending connections are pinpointed with
special icons. Clicking on any connection point, the user can
se an explanation about the correctness of that union.

DEVELOPMENT PROCESS ISSUES
How would this model fit in the software development
process? The model is general enough to be applied in very
different ways and at very different abstraction levels, from
microcomponents [4] to architectural compositions [1]. The
first step for the model to be used is a process of
instantiation, for which a decision is made about what
software artefacts will be identified with C. Next, the
concepts of component sources and sinks must also be
identified for the elements in C.

Fig. 1. Itacio prototype architecture

The construction of component-based software can be
driven by any chosen methodology, and this is not the focus
of this article. Essentially, components will be developed

from scratch or reused from some other source, and then
assembled. In both cases, the knowledge about each
component (restrictions and guarantees) must be collected in

Component
descriptions

System
description

Java KB
generator

ECLiPSe inference
engine

XML results
file

Java graph
layout library
(GFC)

Results & Traces

Java XML
generator

XSLT sheet for
VML

XSL / VML
renderer (MS
Internet Explorer)

the component definition, which will be stored in some sort
of database (and it has been said that simple text files will
suffice as the simplest case). Also, any auxiliary predicates
needed will also be stored in the corresponding library,
L(Ω). Of course, the process of collecting knowledge while
keeping consistency and/or efficiency is not a trivial one,
but it can be supported by work already done in the area of
knowledge engineering.

During the assembly phase, verification can start very early.
The model described here could even be slightly modified
so that a knowledge base is generated upon a non-
topologically-correct system; even if there are unconnected
components, restrictions can be verified in a “check-as-you-
add” basis. The only problem is that the knowledge base
would be incomplete, so there would be the possibility that
many restrictions fail, but this could be useful for the
developer in practice, if he can isolate the interesting
diagnostics and discard the others. When a restriction is not
fulfilled, the system can pinpoint the offending connection
and even explain the reason for the incorrectness, so that
appropriate action (introduce additional components, modify
component requirements) is taken.

Fig. 2. Results of a validation in Itacio (Internet Explorer
screen fragment). The big square on the lower left corner is
an invalid connection. Clicking on the invalid connection
point it gives explanations about the failed requirements.

This model has also a role in the development of a
component in itself; the set of restrictive expressions offers
an invaluable help regarding testing.Apart from the usual
testing procedures based on general-purpose techniques, all
of the restrictive expressions of the component should be
taken into account. The problem of determining if a
component behaves as it claims to behave (that is, if the
restrictive expressions are, in fact, true) has no known
universal solution, but it can ultimately be addressed by
means of traditional testing and quality assurance
techniques, by applying the Itacio model at inner abstraction
levels, or by using any other verification-and-validation
technique.

Evolution: The problem of system evolution can greatly
benefit from this approach. Whenever a change is made to
the system by substituting a component (be it with a newer
version or with different components) the restrictive
expressions for that component will be updated accordingly;
in this case, a completely automatic process can generate
again the whole knowledge base K(Ω) and make all the
corresponding tests over R(Ω), detecting any violation of a
requirement, even if that requirement is indirectly affected
by the change as the result of a chain of influences.

If the change is being made inside a component C without
substituting it, the knowledge stored in E(C) will serve again
as a guide for proper testing; E(C) contains what a
component promises to be. If these statements do not change
(that is, the requirements/guarantees are not affected by the
modification of the component) the test procedures
developed when building the component should be reused to
make a regression test (as automatic as it can be); if the
behaviour of the component changes, E(C) will be updated,
and the test cases will be updated accordingly, so that the
component can be properly tested. Also, the impact of this
behaviour change in the overall behaviour of the system can
be assessed by generating K(Ω) and verifying again if
correct(Ω) holds.

CONCLUSIONS AND FUTURE WORK
The use of software components in industry is usually ad-
hoc and many tools are focused on low-level issues. We
think that many of the bugs that are produced when
integrating components could be caught with a knowledge-
based approach; much of the knowledge about restrictions
or requirements is only collected in documentation and
serves no purpose when it comes to automatic verification of
systems, so its usefulness is simply lost.

The model presented here offers a method for integrating
knowledge in the component-based software development

process, and its role in several development stages is
discussed. This approach allows to enhance unit testing of
components and also to make more complex deductions
about the global behaviour of the system. This kind of
analysis is not usually done, although relying exclusively on
testing stages puts too much pressure on this activity.

As said above, we have built a second, web-based prototype
of Itacio. We are working on specific applications of this
prototype at different abstraction levels, such as
microcomponents, contracts between objects, etc. We expect
this system to grow in order to validate our ideas in a variety
of fields. In the future, other research lines could be
addressed, such as reverse engineering techniques for
detecting components in legacy code (so that this
verification model could be applied to non-component-
based, legacy software), improving the use of constraint
logic programming so that the system not only detects
problems but also makes a reasoning to propose a solution
(semi-automatic design systems), etc.

REFERENCES
1. Abd-Allah, A. Composing Heterogeneous Software

Architectures. Doctoral Dissertation, Center for
Software Engineering, University of Southern
California, August 1996.

2. Bergeretti, J.F., Carré, B.A. Information-Flow and
Data-Flow Analysis of while-Programs. ACM
Transactions on Programming Languages and Systems,
Vol. 7, Nº 1, Enero de 1985, págs. 37-61.

3. Biggerstaff, T., Richter, C. Reusability framework,
assessment and directions. IEEE Software, págs. 41-49,
Julio de 1987.

4. Cernuda, A., Labra, J. E., Cueva, J. M. Itacio: A
Component Model for Verifying Software at
Construction Time. III ICSE Workshop on CBSE. 5-6
June 2000, Limerick, Ireland.
http://www.sei.cmu.edu/cbs/cbse2000/papers/
index.html

5. Cousot, P., Cousot, R. Static Determination of Dynamic
Properties of Programs. Proceedings of the 2nd
International Symposium on Programming. Editor: B.
Robinet. Paris, 13-15 april, 1976.

6. Cousot, P., Halbwachs, N. Automatic Discovery of
Linear Restraints Among Variables of a Program.
Conference Record of the Fifth Annual ACM
Symposium on Principles of Programming Languages.
Tucson, Arizona, 23-25 january, 1978.

7. Cousot, P. Abstract Interpretation. ACM Computing
Surveys, Vol. 28, Nº 2, Junio de 1996.

8. ECLiPSe Web site: http://www.icparc.ic.ac.uk/eclipse
9. Finkelstein, Anthony and Kramer, Jeff. Software

Engineering: A Roadmap. The Future of Software
Engineering, 22nd International Conference on Software
Engineering, 2000. ACM ISBN: 1-58113-253-0.

10. Frühwirt, T. et al. Constraint Logic Programming – An
Informal Introduction. Technical report ECRC-93-5.
European Computer-Industry Research Centre,
February 1993.

11. Gacek, C., Boehm, B. Composing Components: How
Does One Detect Potential Architectural Mismatches?
Position paper to the OMG-DARPA-MCC Workshop
on Compositional Software. Center for Software
Engineering (University of Southern California) 1998.
http://sunset.usc.edu/TechRpts/Papers/usccse98-
505.html

12. Garlan, D., Allen, R., Ockerbloom, J. Achitectural
Mismatch or Why it’s hard to build systems out of
existing parts. IEEE Software, Noviembre de 1995,
págs. 17-26.

13. Itacio project web page. http://i.am/itacio
14. Jones, N.D., Nielsen, F. Abstract Interpretation: a

Semantics-Based Tool for Program Analysis. 30 june
1994.

15. Lions, J. L. Ariane 5 Flight 501 Failure: Report by the
Inquiry Board. Paris, July, 1996.
http://www.esrin.esa.it/htdocs/tidc/Press/
Press96/ariane5rep.html

16. Lucas, C. Documenting Reuse and Evolution with
Reuse Contracts. Ph.D. Dissertation, Vrije Universiteit
Brussel, Belgium. September 1997.

17. Meyer, Bertrand. Object-Oriented Software
Construction (2nd edition). Prentice Hall, 1988.

18. Smullyan, Raymond M. First-Order Logic. Dover
Pubns, February 1995. ISBN: 0486683702.

19. Steyaert, Patrick et al. Reuse contracts: Managing the
evolution of reusable assets. Proceedings of
OOPSLA’96, vol. 31(10) of ACM Sigplan Notices,
pages 268-285. ACM Press, 1996.

20. Szyperski, Clemens. Component Software – Beyond
Object-Oriented Programming. Addison-Wesley, 1997.

21. Wallace, Mark et al. ECLiPSe: A Platform for
Constraint Logic Programming. William Peney
Laboratory, Imperial College, London. August 1997.

