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Abstract 

The Itacio component model intends to bring a method of verifying software systems made up of 
components. This method can be applied at different levels of abstraction, and to different facets of the 
software development process. All that is needed is to define the correspondence between the Itacio 
model basic entities –components, sources, sinks- and the entities of the addressed problem. 

As an example, one of the potential uses of this model is the verification of system evolution. The 
interaction pattern between several objects can be described as a so-called reuse contract; the 
potential modifications of this contract have already been formalised as operators. Considering these 
contracts and operators as Itacio components, the evolution of a system can be modelled as their 
composition.  This complex can be verified by the usual Itacio inference process, and inconsistencies 
or undesired effects in the evolution of a system can be foreseen. 

The main advantages of Itacio is that it brings a very simple model that can be applied in the real 
world without the need of a very specialised training, and the deliberate generality of this model 
allows it to be applied to different kinds of software structures. The time evolution modelled and 
presented in this article is a good example, since the Itacio model was not designed with this specific 
use in mind. 

KEYWORDS: software components, component model, verification, evolution, reuse, reuse 
contracts. 

1. Introduction 

Building software upon components allows to reduce development costs and shortening time-to-
market. But current component technologies (COM, CORBA, JavaBeans) usually solve cross-
platform or low-level technical problems. Automatic composition checking is usually restricted to 
signature matching; in addition, the evolution and maintenance of systems can lead to problems as 
active restrictions are unintentionally violated. 

We think that components should explicitly incorporate assumptions –about what a component 
produces and also about what it expects from its neighbours- in a manner that is statically, 
automatically verifiable, and that the component concept can offer a reasoning framework that can be 
applied much further than at the “library” level, as it is frequently used nowadays. For instance, it can 
be used to keep trace of (and verify) restrictions as systems evolve. 

In this paper, the Itacio component model is briefly introduced. Then, some previous work in the 
area of reuse contracts and operators is summarised. Afterwards, the application of this model to reuse 
contracts is described and an example of use is presented. Finally, conclusions are obtained from these 
experiences. 

2. The Itacio Component Model 

The Itacio component model [1] offers a way of verifying software systems built by joining 
components. The main advantages of this model are that no execution of the program is needed, and 



the influence of components (even indirect or side-effect influence) is easily taken into account 
without data flow analysis. Also, the specification system is fully modular and, in addition, it can be 
easily supported by a Constraint Logic Programming system. Finally, this model can be applied at 
different levels of abstraction. The model deliberately avoids to bind the user to a specific semantic 
notion of component, so that he or she can apply a general verification framework to a very wide 
spectrum of problems. 

A precise description of this model can be found in [2]. The central idea of the Itacio model is a 
flexible definition of a component. A component C is an entity which has a frontier F(C) and a set of 
restrictive expressions E(C). 

F(C) is a finite set whose elements are called connection points; these connection points can be 
sources (whose set is denoted by S(C)) or sinks (whose set is denoted by K(C)). Informally stated, 
sources carry information outside of a component (e.g., a function call) and sinks introduce 
information into a component (e.g., a function’s entry point). 

Restrictive expressions are also divided into two disjoint subsets. The set of requirements R(C) 
contains restrictive expressions that are Horn clauses (a special form of first-order logic predicates) 
over the sinks. The set of guarantees G(C) contains Horn clauses over both sinks and sources. In 
addition, there is a one-to-one correspondence between the sinks and the requirements (there is one 
requirement predicate associated to each sink, although this predicate can refer to more than one sink). 
Requirements do not refer to sources because this system intends to verify the composition of 
components, not the internal behaviour of a component; so it is assumed that we have control over the 
behaviour of the component itself and we do not need to restrict our own outputs. Maybe another 
component will (in its restrictions over its own inputs or sinks).   

A system Ω = {ν, ε, L} is a finite graph whose nodes ν are components and whose edges ε are 
source/sink pairs, together with a set L of auxiliary predicates called the library. In other words, a 
system is built by taking components and connecting each and every source with some sink, and 
adding some auxiliary predicates. The first requirement for a system (the so-called topological 
correctness) establishes that there will be no isolated connection points and each one of them will be 
connected only once. These topological correctness restrictions exist only for prototype simplicity 
reasons, but in a very near future the model will be extended to handle the connection of a source with 
multiple sinks or vice versa. 

We then define the raw knowledge base Kr(Ω) = {p / (p ∈ R(C) ∨ p ∈ G(C)), C ∈ ν}; it is the 
concatenation of all the restrictive expressions of the components of the system. 

From its definition, it can be seen that Kr(Ω) does not depend on ε; so it does not contain any 
information about connections. The knowledge base K(Ω) is built by taking Kr(Ω) and following an 
iterative substitution process (detailed in [2]) over all the source and sink names so that, if  some si ∈ 
S(Cm) and kj ∈ K(Cn) are connected, a new, unique atom name a is generated, and all the occurrences 
of either si or  ki in Kr(Ω) are substituted by a. The knowledge base K(Ω) resulting from this process 
implicitly contains the information about the topology of the system. The building process also 
ensures that the relationship between each resulting requirement and its associated sink is not lost. 

Finally, the verification model relies on an inference process over K(Ω). The system is considered 
to be correct if each and every restrictive expression of K(Ω) is proven to be true. Also, since each 
requirement in K(Ω) is related to one sink, if some restriction is not fulfilled it is possible to know 
exactly which connection point is failing and why. 

A first prototype for this model was implemented with a diagramming tool [1]; after that, a 
Java/XML/VML prototype (with a web-based user interface) was built [2]. Experiments with this 
prototype have allowed refining the structure of the model and testing its application to new 
abstraction layers of the development process to verify that this simple schema is useful and will 
behave as expected in different situations. One of the explored areas (with a good response of the 
model, which did not require any adaptation at all even when this use had not been anticipated) is 
reuse contracts. 



3. Reuse Contracts 

The idea of contracts applied to software has been explored under different interpretations (see [4], 
[6], [7]). In this paper, the “reuse contract” approach due to Carine Lucas [6] is examined. First, 
because it is a static, declarative model, which better fits our ideas (static analysis is one of the key 
points for us). Moreover, Lucas contract model allows a higher modularisation than others, so that it is 
easier to describe in Itacio. So, from now on, the term “contracts” will refer to the reuse contracts 
formalized by Lucas. Part of her work will be summarised next. 

Reuse contract: A reuse contract is a set of participants, each with a name (unique within this 
reuse contract), an acquaintance clause and an interface. 

Acquaintance clause: If a participant in a contract “knows about” other participant, the former will 
have an acquaintance clause where the latter is mentioned. The calling participant will refer to the 
called one by means of an acquaintance name, a sort of alias which is also stated in the acquaintance 
clause. 

Interface: The interface of a participant is basically a set of operation1 descriptions. Each 
description contains an operation name and a list of the operations it calls; these are qualified with the 
acquaintance name. 

With these elements, the collaboration between a set of participants can be modelled. A reuse 
contract contains information about the participants, the operations they implement, the participants 
they need to know about for that reason, and the dependencies between operations. 

It is possible to build an inconsistent reuse contract; for instance, operations can refer to non-
existing operations or participants. To avoid this, correction criteria are defined; a contract is said to be 
well-formed if it satisfies three basic well-formedness clauses, WF1 / WF2 / WF3. WF1 requires that 
acquaintance clauses refer to existing participants, WF2 requires that operation dependencies refer to 
valid acquaintances, and WF3 requires that the invoked operation exists in the referenced participant. 
Lucas original work does not state more clauses because her notation implicitly avoids any other error 
but, if using a different notation, additional clauses may be necessary (this is our case). 

Apart from the reuse contract itself, Lucas includes a study of the modifications that a contract can 
suffer. These modifications adopt the form of operators. They are grouped upon scope and kind of 
modification. 

On one hand, there are: 

• Participant modifications, when the modifications affect the operations of participants (scope of 
the modification: inside the participant). 

• Context modifications, when the modifications affect the existence of participants or the 
relationship between participants (scope of the modification: outside a participant). 

On the other hand, there are: 

• Extension modifications (adding elements). 

• Cancellation modifications (removing elements). 

• Refinement modifications (adding dependencies between elements). 

• Coarsening modifications (removing dependencies between elements). 

Since these two modification groups are orthogonal, the result is eight possible combinations, and 
hence eight operators.  

• Participant extension: adding operations to existing participants. 

• Context extension: adding participants to a contract. 

                                                      
1 Be careful not to confuse operation (something similar to method in OOP) with contract operator (explained later). 



• Participant cancellation: removing operations from a participant. 

• Context cancellation: removing participants from a contract. 

• Participant refinement: adding dependencies (calls) between operations of participants. 

• Context refinement: adding dependencies between participants (acquaintance clauses). 

• Participant coarsening: removing dependencies (calls) between operations of participants. 

• Context coarsening: removing dependencies between participants (acquaintance clauses). 

These operators are formally defined in [6]. First, the structure of their parameters is clearly stated; 
an operator takes a contract and a contract modifier (a list of participants, operations and so on) and 
produces a new resulting contract. The correctness criteria for operators involve the modifier and the 
contract it applies to; that is, the applicability of the operator. It is not enough for a modifier to be only 
morphologically correct; when it is applied to some contract by means of an operator, additional 
verifications must be made. For instance, a participant extension modifier could try to add an 
operation to a participant that does not exist in the target contract. 

It must be noted that contract modifiers have a shape very similar to a contract (or to a contract 
fragment, in some cases). This is normal, since the structure of the information contained in a contract 
modifier is basically the same as in a contract, and in addition using a similar notation makes the 
implementation of prototypes much easier. 

The eight reuse operators are atomic, in the sense that they collect the basic modifications a 
contract can suffer, and they are fully modular, in the sense that each one of them can be 
independently verified and applied. In addition, if an operator is correctly applied to a well-formed 
contract, it has been proven that the resulting contract will still be well-formed. 

The drawback of this schema is that the use of only one operator would represent a very limited 
change to the system. Modifying a system usually involves the application of several operators, and 
there exists the concept of combined operators; if they are not used (this is our case) the maintenance 
action must be first decomposed into the atomic operators. 

A chain of modifications to a contract can lead to errors or inconsistencies as the system evolves. 
Lucas proposes comparing the applied operators before applying them, using several “rules of thumb” 
to discard dangerous combinations. But the combination of reuse contracts and operators can also be 
addressed under the Itacio approach without the need of such rules. The following section will explain 
this. 

4. Reuse Contracts Considered as Itacio Components 

As said above, reuse contracts are basically descriptions of the interaction pattern between several 
participants. They collect information about the operations each participant offers, the acquaintance 
relationships between participants, and the operations invoked by each operation of a participant, be it 
inside the same participant or using the acquaintance relationship to call operations from other 
participants. 

Participants/operations are much like objects/interfaces; it would be obvious to identify a 
component with an object (and hence with a participant). This is an old issue, revisited from time to 
time [3]. But this is not the approach of this paper (although Itacio can perfectly be applied under that 
interpretation; in fact, this was the initial motivation of this work). 

Here, the Itacio component model is being applied in order to verify system evolution, so the 
notion of component is applied at a higher level of abstraction. Each contract (the whole contract, 
including all participants) will be considered a component. Also, a modifier (a “contract fragment” 
whose mission is to be used as a parameter in reuse contract operators) will be considered a 
component too. 

A reuse contract fulfils the requirements for being considered a component [2]: it has a clear 
frontier and contains a set of restrictive expressions. This frontier will be considered to have only one 



source: the contract name, which allows recovering any information about the contract. It can be seen 
as something very similar to an “integer value” component; it would have only one source that gives 
an integer value. In this case, the only difference is that “a contract” is a much more complex value or 
data type than “an integer”, and represents a much higher level of abstraction; but the general role of 
both components is essentially the same. 

Contracts (and contract fragments or modifiers) 
are not the only kind of component to be 
considered. Contract operators are also considered 
as components. A contract operator has also only 
one source (the contract that results from applying 
the operator) and two sinks: the original contract 
and the modifier contract. Once again, consider the 
example of an “Add” component; it would receive 
two integers and produce a new integer. Contract 
operator components receive and produce values 
that are more complex, but the structure of these 
components is essentially the same. 

Contract: smplDrive 

PARTICIPANT: smplDriver 

OPERATIONS: 

::go() 

      myCar::startEngine() 

      myCar::pushGasPedal() 

::stop() 

      myCar::pushBrake() 

      myCar::stopEngine() 

::goFaster() 

      myCar::pushGasPedal() 

::goSlower() 

      myCar::pushBrake() 

PARTICIPANT: 
smplCar 

OPERATIONS: 

::startEngine() 

::stopEngine() 

::pushBrake() 

::pushGasPedal() 

 

ACQUAINTANCES: 
smplDriver::myCar->smplCar 

Fig.  1. An elementary sample contract 

 
Type=smplDrive 
 
Sources=res 
 
BEGIN_RESTRICTIONS 
 
isContract($res$). 
 
 
participant($res$, smplDriver). 
participant($res$, smplCar). 
 
acqRelationship($res$, smplDriver, myCar, 

smplCar). 
 
operation($res$, smplDriver, go). 
operation($res$, smplDriver, stop). 
operation($res$, smplDriver, goFaster). 
operation($res$, smplDriver, goSlower). 
 
operation($res$, smplCar, startEngine). 
operation($res$, smplCar, stopEngine). 
operation($res$, smplCar, pushBrake). 
operation($res$, smplCar, pushGasPedal). 

 
operationInvocation($res$, smplDriver, go, 

myCar, startEngine). 
operationInvocation($res$, smplDriver, go, 

myCar, pushGasPedal). 
operationInvocation($res$, smplDriver, 

stop, myCar, pushBrake). 
operationInvocation($res$, smplDriver, 

stop, myCar, stopEngine). 
operationInvocation($res$, smplDriver, 

goFaster, myCar, pushGasPedal). 
operationInvocation($res$, smplDriver, 

goSlower, myCar, pushBrake). 
 
END_RESTRICTIONS 

 

Fig.  2. Contract of Fig.  1 expressed in 
Itacio prototype. 

Given these component definitions, it is possible to model the evolution of a system as the application 
of a chain of operators over contracts. For instance, let us have an interaction pattern between a car 
and its driver. This scenario could be described with a reuse contract as described in Fig.  1. If an 
operation invokes some other operation, the invoked one appears indented. For example, 
smplDriver::go() invokes two operations of smplCar: startEngine() and 
pushGasPedal(). Also, smplDriver has an acquaintance clause in which it “knows about” 
smplCar and calls it myCar. 

All of this information can be represented in a Constraint Logic Programming system with a few 
declarative statements (Fig.  2); in the Itacio prototype, a proper predicate structure has been designed 
to do this in an easy and readable manner. Also, a basic library for handling, querying and verifying 
these structures (the L mentioned in chapter 2) has been developed. 

If this system must be modified so that the car has a radio and the driver is able to listen to music, a 
contract modifier could be built that adds the necessary operations to the involved participants, as 
described in Fig.  3. 



Contract: driveMusic 

PARTICIPANT: smplDriver 

OPERATIONS: 

::listenToMusic() 

 myCar::turnOnRadio() 

::stopListeningToMusic() 

 myCar::turnOffRadio() 

PARTICIPANT: 
smplCar 

OPERATIONS: 

::turnOnRadio() 

::turnOffRadio() 

 

ACQUAINTANCES: 

smplDriver::myCar->smplCar 

Fig.  3. A contract modifier to add 
operations to participants. 

 

Fig.  4. A simple contract modification 
(Itacio prototype screen capture) 

In order to combine these two contracts and bring a new contract that reflects the modification of 
the system, a contract operator component must be used. In this case, the involved operator is a 
participant extension. For any operator to be applied, the contract and the modifier must fulfil several 
criteria; the restrictive expressions of the operator component require this. 

Finally, the resulting contract must be verified. A new component comes into action, with only one 
sink for the purpose of verification. This component has only one restriction: the contract it receives 
must be well-formed. 

Combining all these components in Itacio, the result is a graph that models the evolution of the 
contract (Fig.  4). In this case, the combination of components is correct (to put it in reuse contracts 
terminology, contract smplDrive is well-formed, and it is participant-extendible by 
driveMusic). 

5. Case Study: Saving Documents in MFC 

The Microsoft Foundation Classes, or MFC for short [8], is a big set of classes written in C++. It is 
not only a mere class library, but a whole framework for developing applications for the Microsoft 
Windows operating systems family. The development tools from Microsoft generate application 
skeletons in MFC that the programmer can leverage. Windows native development in C/C++ requires 
quite a big amount of skeleton code, so using MFC helps productivity. The drawback is the same as in 
many other application development frameworks; its learning curve (as said above, MFC is really big) 
and the dependence on third-party (in this case Microsoft) code. 

The example presented here has been extracted from a real case; the adopted solution was not a 
desirable one, but there were not many other options at that moment (and, anyway, it serves as an 
example of other different and more normal situations). The scenario was the development of a 
client/server graphical editor. One of the requirements for this system called for a modification of the 
document saving schema; when the user pushed the Save button of the editor, some specific things had 
to be done. As usual in application frameworks, the programmer had to modify the behaviour of some 
classes (by inheritance in this case), taking into account the MFC code environment. The original 
saving schema of MFC is reproduced in Fig.  5. 

The outer rectangles represent the involved classes2. The inner rectangles represent operations 
(class methods), and the arrows represent the calling structure. 

The operations that appear in grey, together with the thick arrows, represent the calling sequence 
that had to be modified. It was necessary to derive a new CDocument subclass (in terms of C++ 
programming), and implement a new version for the operation OnSaveDocument(). There was 

                                                      
2 Actually, this schema has been a bit simplified. There were more than two classes involved, but the simplification made does not spoil 

the example and it gets much simpler and readable.   



additional work to do; the behaviour implemented in DoFileSave() and DoSave() was not 
appropriate. The desirable solution would have been to redefine also these functions in the derived 
class; but it was not possible, because the design of the class library did not consider these function 
modifiable and they were not declared as virtual. This is a very common problem when using 
frameworks; their designers cannot anticipate all the possible uses or modifications to the original 
structure, and in addition the users must stick to an existing design, even when it is not the best one for 
their current purpose. They do not have the possibility of refactoring the code. 

 msgRouter 

CDocument 

SaveModified() OnFileSave() 

DoFileSave() 

DoSave() 

DoPromptFileName() 

OnSaveDocument() 

UserPushesSave() 

UserPushesSaveAs() 

OnFileSaveAs() 

 

Fig.  5. Original calling structure for 
saving documents in an MFC 

application 

 

CMyDocument 

msgRouter 

SaveModified() OnFileSave() 

DoPromptFileName() 

OnSaveDocument() 

UserPushesSave() 

UserPushesSaveAs() 

OnFileSaveAs() 

DoSave() 

DoFileSave() 

 

Fig.  6. Modified calling structure in 
CMyDocument 

So the programmer decided to adopt an alternative approach. It was necessary to make a sort of 
bypass, so that OnFileSave()(which indeed happened to be declared as virtual and hence 
modifiable in the derived class) called OnSaveDocument() directly, avoiding the undesired effects 
of DoFileSave() and DoSave(). In order to substitute these functions, OnSaveDocument() 
had to rely (just as DoSave() did) on DoPromptFilename(), introducing a new dependency. 
This modified structure is depicted in Fig.  6. 

Obviously, the described design involves its risks. The programmer has been forced to introduce 
dependencies that did not exist in the original design of the framework, and to alter its usual behaviour 
in an unpredicted way. The evolution and maintenance of this system is then compromised. Even if the 
assumptions the programmer made were carefully collected in some design document, this 
information would not automatically checkable. 

This is a case where applying Itacio under the “reuse contracts” interpretation can be of value. 
First, the original structure of the MFC document saving system can be documented with a reuse 
contract that describes the interaction between the participants; see Fig.  7 for the contract schema and 
Fig.  8 to see how it appears expressed in Itacio. 

With this starting point, the adaptations made to this schema can be also represented as contract 
operators. In this example, operators are applied “as is”, although frequently used operators can be 
combined to have pre-built operator chains packed as a single component. As initially stated in Lucas’ 
work, the combination of several operators must be evaluated under some combinability rules in order 
to predict the appearance of malformed contracts; but the Itacio inference model offers a significant 
advantage. It verifies this system using all its information [2] and specific “rules of thumb” are not 
necessary. A fragment of the system in an Itacio prototype can be seen in Fig.  9. 



PARTICIPANT: cDocument 
OPERATIONS: 
::doFileSave() 
    cDocument::doSave() 
::doPromptFileName() 
::doSave() 
    cDocument::doPromptFileName() 
    cDocument::onSaveDocument() 
::onFileSave() 
    cDocument::doFileSave() 
::onFileSaveAs() 
    cDocument::doSave() 
::onSaveDocument() 
::saveModified() 
    cDocument::doFileSave() 

 
PARTICIPANT: msgRouter 
OPERATIONS: 
::userPushesSave() 
    cDocument::onFileSave() 
::userPushesSaveAs() 
    cDocument::onFileSaveAs() 
 
ACQUAINTANCES: 
cDocument::me->cDocument 

msgRouter::targetDoc->cDocument 

Fig.  7. Original MFC document saving schema described as a reuse contract 
Type=saveMFC 
Sources=res 
BEGIN_RESTRICTIONS 
 
isContract($res$). 
 
participant($res$, msgRouter). 
participant($res$, cDocument). 
 
acqRelationship($res$, msgRouter, targetDoc, 

cDocument). 
acqRelationship($res$, cDocument, me, 

cDocument). 
 
operation($res$, cDocument, onFileSave). 
operation($res$, cDocument, onFileSaveAs). 
operation($res$, cDocument, saveModified). 
operation($res$, cDocument, doFileSave). 
operation($res$, cDocument, doSave). 
operation($res$, cDocument, doPromptFileName). 
operation($res$, cDocument, onSaveDocument). 
 
operation($res$, msgRouter, userPushesSave). 

operation($res$, msgRouter, 
userPushesSaveAs). 

 
operationInvocation($res$, msgRouter, 

userPushesSave, targetDoc, onFileSave). 
operationInvocation($res$, msgRouter, 

userPushesSaveAs, targetDoc, 
onFileSaveAs). 

 
operationInvocation($res$, cDocument, 

saveModified, me, doFileSave). 
operationInvocation($res$, cDocument, 

onFileSave, me, doFileSave). 
operationInvocation($res$, cDocument, 

doFileSave, me, doSave). 
operationInvocation($res$, cDocument, 

onFileSaveAs, me, doSave). 
operationInvocation($res$, cDocument, doSave, 

me, doPromptFileName). 
operationInvocation($res$, cDocument, doSave, 

me, onSaveDocument). 
 
END_RESTRICTIONS 

Fig.  8. Contract of Fig.  7 expressed as an Itacio component 

 

Fig.  9. MFC document saving system modeled in Itacio/Contracts (fragment) 

The upper left box in this diagram (not shown) would be the contract that describes the original 
MFC behaviour, and the other boxes represent the modification chain until the desired new structure is 
achieved (bottom right). As said above, there could be a much smaller number of boxes if combined 
operators were used, but in this case we stick to the atomic, basic operators. 

This structure represents, in fact, a knowledge base that can be used to make reasonings about the 
system. For instance, the next version of MFC could be modified so that the operation 
DoPromptFileName() (see Fig.  6) is removed. To evaluate how this change would impact the 
system, it is not necessary to make a complete, manual review. Simply, an operator is applied to the 
base MFC contract to represent the new behaviour (or the base contract is directly modified if the user 
does not want to explicitly model MFC evolution). Although the modification is made at the beginning 



of the chain, the system pinpoints the problem (with a big square) where it manifests: in this case, the 
result of the modification is a contract which is not well-formed (Fig.  10). 

The system is able to explain the problem. In this case, the described change in the MFC 
implementation would break our code, because we made some assumptions when it was built. These 
assumptions can be violated when modifying MFC itself. Documenting these assumptions with reuse 
contracts offers a good way of detecting this kind of problems in a general way. 

 

 

 

Fig.  10. Detecting an inconsistency in contract 
evolution 

The removal of a base class operation 
seems a radical modification, but it is not 
the only one to be detected. In fact, the 
Itacio model is extremely flexible, so 
potentially any restriction that can be 
expressed in terms of first-order logic 
predicates can be taken into account in the 
verification process. 

For instance, let us suppose that the 
operation DoPromptFileName() (see Fig.  
5 again) is not removed in the next version 
of MFC, but DoSave() stops calling it. 
Since our modified version of 
OnSaveDocument() is trying to mimic the 
behavior of DoSave() (and in fact this is 
the reason why OnSaveDocument() calls 
DoPromptFileName()) , if DoSave() stops 
making this call, that would be a very 
important information. This change would 
not break the basic contract structure, but it 
would break an important assumption. 

Although the original contract model is not designed to express a restriction like “This contract 
requires that in the base contract operation A calls operation B”, it can be directly expressed in Itacio 
with only one declarative statement, with no specific adaptation of the system. If the operation 
invocation is removed from the MFC base contract, the system will pinpoint the broken assumption 
just the same as in the case of the operation removal, and also explaining the specific reasons of the 
problem. 

6. Conclusions 

The reuse contracts model is a valid conceptual structure upon which reasonings can be made. 
These reasonings can be carried out in a static manner, without the need of testing or running (even 
building) the program under inspection. 

The Itacio model was supposed to be flexible enough to fit different component notions and 
express very different kinds of restrictions. Applying the Itacio verification system to reuse contracts 
has been a demonstration of this fact, since Itacio had not been designed to cope with this scenario. 

The combination of reuse contracts and the Itacio model can be of value (provided appropriate 
tools have been developed, which is a perfectly achievable goal as proven by the simplicity of the 
current prototypes) to verify the evolution of a system. It allows modelling its collaboration structure, 
keeping record of the assumptions made and automatically verifying that these assumptions and 
requirements are fulfilled. 
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